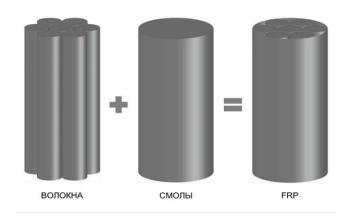
FRP: инновационное решение для надежных конструкций и безопасных проектов. Как композитные материалы стали ключом к долговечности в строительстве.

В мире строительства и обслуживания инфраструктуры вопрос долговечности и надежности конструкций играет ключевую роль. Традиционные материалы, такие как нержавеющая сталь, хоть и обладают некоторыми преимуществами, все же имеют свои недостатки, среди которых основной – недостаточная устойчивость к коррозии. Один из способов решения этой проблемы – применение композитных материалов.

FRP (Fiber-reinforced plastic) – это материал, изготовленный из полимерной смолы и усиленный стекловолокном. Стеклопластик (FRP) представляет собой инновационное решение, которое обладает множеством преимуществ в сравнении с традиционными материалами.

Однако, несмотря на все преимущества FRP инженеры и проектировщики опасаются закладывать решения из этого материала в проект по нескольким причинам:


- отсутствие четких и однозначных стандартов на применение FRP в строительстве. Это может привести к трудностям при расчетах, проектировании и сертификации конструкций.
- недостаток данных о долгосрочной долговечности: FRP относительно новый материал в строительной индустрии, и инженеры могут опасаться недостатка надежных данных о его долгосрочной долговечности и поведении в различных условиях эксплуатации.

Эта статья призвана развеять ваши сомнения относительно FRP и показать, как этот материал может помочь продлить срок службы конструкций и сэкономить ресурсы.

Сложности при использовании традиционных материалов для площадок обслуживания.

Традиционно площадки обслуживания изготавливают из металлических конструкций. В зависимости от степени агрессивности окружающей среды элементы защищают с помощью окрашивания, цинкования, используют горячее цинкование для увеличения защитного слоя, а также нержавеющую сталь там, где требуется высокая коррозионная стойкость.

Однако даже нержавеющая сталь подвергается коррозии. Особую сложность в эксплуатации вызывает питтинговая коррозия. Этот вид коррозии сложно контролировать, так как она может проходить незаметно, даже под защитным покрытием, что негативно сказывается на надежности и безопасности конструкции. Таким образом, конструкции из традиционных материалов необходимо регулярно обновлять. Альтернативой традиционных решений является применение композитных материалов FRP из полимерной смолы, армированной стекловолокном.

Преимущества композитных материалов FRP.

FRP обладает хорошей устойчивостью к воздействию атмосферы, воды и общих концентраций кислот, щелочей, солей, а также различных масел и растворителей.

Преимущества материалов из FRP:

- **Коррозионная стойкость**. Устойчивость к воздействию целого ряда химических веществ, включая соленую воду.
- Высокие нагрузки. Пултрузионные профили обладают высокой несущей способностью.
- Легкий вес. Высокое соотношение прочности и веса по сравнению с традиционными металлическими опорными системами.
- Устойчивый к атмосферным воздействиям. FRP обладает высокой устойчивостью к низким температурам и исключительно хорошо работает даже в самом суровом климате.
- Проводимость. Низкая тепло- и электропроводность.
- **Низкие эксплуатационные расходы.** Устойчив к коррозии, что исключает необходимость в постоянном техническом обслуживании, тем самым более выгоден экономически.
- **EMI и RFI прозрачность**. Диэлектрические смолы прозрачны для электромагнитных волн и радиосигналов.
- **Быстрая и простая установка.** Возможность внесения корректировок «на месте». Монтаж и доработка выполняются с помощью стандартных инструментов.

Также конструкции из FRP позволяют увеличить срок службы сооружений, снизить вероятность разрушения и обеспечить безопасность эксплуатации. Это особенно актуально для инфраструктурных объектов, таких как переходные мостики, смотровые ходы, площадки обслуживания и др., где безопасность играет важную роль. Кроме того, использование FRP позволяет улучшить характеристики конструкций — устойчивость к воздействию различных нагрузок, усталостную прочность.

Исследования UTECH

На основании внутренних исследований компании UTECH, срок службы изделий из композита, армированного стекловолокном (FRP), в зависимости от вида агрессивности среды (C4; C5; CX) эксплуатации, составляет от 20 до 30 лет. Мы провели широкий ряд испытаний изделий из FRP и нержавеющей стали, в том числе тест на старение и реакцию с кислотами, щелочами, солями и нефтепродуктами. Испытания проводились в соответствии с государственными стандартами РФ, чтобы подкрепить заявляемый срок эксплуатации в агрессивной среде официальными заключениями.

Данные испытания позволили нам подготовить уникальный калькулятор срока службы материалов в условиях различных коррозионных сред.

Расчет срока службы элементов из нержавеющей стали AISI 316L и FRP

Исходя из уже полученных данных можно сделать сравнительный расчет срока службы элементов из нержавеющей стали AISI 316L и FRP.

Материал из нержавеющей стали AISI 316L считается подходящим для солесодержащих сред и обычно используется в средах с высокой степенью коррозии, включая многие оффшорные и морские применения.

При надлежащем уходе за нержавеющей сталью AISI 316L и размещении ее в подходящих условиях она демонстрирует превосходную стойкость к коррозии. Однако, коррозионное поведение нержавеющих сталей (включая AISI 316L) относительно непредсказуемо и сильно зависит от конкретных условий эксплуатации, а ожидаемый срок службы зависит как от общих условий окружающей среды, так и от местных, которые могут быть обусловлены микроклиматом, например расположением вблизи источников загрязнения, температурный режим и др.

Для расчета возьмем профили с геометрическими характеристиками одного порядка при работе на растяжение – Швеллер 5 и Швеллер OS FSS CH100-1 FRP.

Рассмотрим следующие условия:

- потеря прочности не более 20%
- среда с соляной кислотой с концентрацией 0,5%
- температура 20°С

Согласно справочнику Chemical Resistance: Guide for Metals and Alloys II при заданных параметрах потери сечения для нержавеющей стали AISI 316L составляют 0,11–1,1 мм/год, а также большой риск возникновения язвенной коррозии. Так как язвенную коррозию сложно прогнозировать, для данной задачи учтем только влияние потери сечения.

В таблице приведены соотношение скорости коррозии и ожидаемый срок службы.

Скорость коррозии, мм/год	Ожидаемый срок службы, год
0,11	17,609
0,6	3,2284
1,1	1,7609

Для оценки срока службы FRP принимаются значения изменения физико-механических показателей образцов после воздействия агрессивной среды. Согласно нашим исследованиям и интерполяции показателей, потеря прочности при заданных параметрах наступит через 24,36 года, что дольше на 27,7%, чем при минимальной скорости коррозии нержавеющей стали.

Стоит отметить, что данный расчет выполнен для определенной среды. В реальных условиях характеристики сред отличаются и имеют несколько факторов, влияющих на срок службы.

Для каждого конкретного проекта следует производить предварительную оценку соответствия требуемых и прогнозируемых сроков службы конструкции.

Экономическая эффективность использования FRP

Немаловажную роль при выборе решения является и стоимость, поэтому далее оценим стоимости материала в случае эксплуатации площадки в течение 20 лет.

Для расчета возьмем площадку UTECH.

В таблице ниже приведен расчет окончательной стоимости материалов.

	AISI 316L, скорость коррозии 0,11 мм/год	AISI 316L, скорость коррозии 0,6 мм/год	AISI 316L, скорость коррозии 1,1 мм/год	FRP
Ожидаемый срок службы, годы	17,61	3,23	1,76	24,36
Вес площадки, кг	261	261	261	89
Первоначальная стоимость материалов	150 858	150 858	150 858	133 500
Количество замен	1	6	11	0
Итоговая стоимость, р	301 716	1 056 006	1 810 296	133 500

Следует отметить следующее:

- 1. Вес площадки из FRP ниже и не требует большого количества рабочих для сборки и перемещения конструкции.
- 2. Процесс сборки и установки площадки из FRP более простой, так как все соединения болтовые. Для монтажа не требуются высококвалифицированные сотрудники и специальное оборудование.
- 3. Элементы FRP не требуют регулярной очистки, в то время как нержавеющую сталь следует промывать для предотвращения язвенной коррозии.

Таким образом при сопоставимой начальной стоимости решений, решения из FRP позволяет сократить расходы в долгосрочной перспективе более чем в 2 раза.

Инженеры компании UTECH продолжают проводить испытания для определения всех сред и параметров, влияющих на срок службы конструкции из FRP.

Нормативные документы для проектирования конструкций из FRP.

При проектировании из конструкций из композитных полимерных материалов (FRP) следует учитывать следующие нормативные документы:

- 1. СТО АВТОДОР 2.24—2016 Рекомендации по проектированию, строительству и эксплуатации композитных конструкций: ограждений, лестничных сходов, смотровых ходов и водоотводных лотков искусственных дорожных сооружений на автомобильных дорогах государственной компании «Автодор».
- 2. Методические рекомендации по расчету мостовых пролетных строений с применением композитных материалов.
- 3. ГОСТ 33344—2015 Профили пултрузионные конструкционные из полимерных композитов. Общие технические условия.
- 4. СТО НОСТРОЙ 2.29.112–2013 Мостовые сооружения. Строительство деревянных и композитных мостов. Часть 2 Сооружение пешеходных мостов из полимерных композитных материалов.
- 5. СП 35.13330.2011 «МОСТЫ И ТРУБЫ».
- 6. ГОСТ 54928–2012 «ПЕШЕХОДНЫЕ МОСТЫ И ПУТЕПРОВОДЫ ИЗ ПОЛИМЕРНЫХ КОМПОЗИТОВ».

Расчет конструкций из FRP следует вести с учетом прочности вдоль и поперек волокон, более подробно расскажем в следующих наших статьях.

В случаях, когда сроки технического обслуживания значительно отличаются друг от друга и когда эстетическая коррозия неприемлема, можем рекомендовать систему FRP UTECH в качестве альтернативы металлической конструкции.

Для подбора оптимального решения в вашем случае или для проектирования конструкций из портфолио UTECH вы можете обратиться к нашим инженерам.